NASA Dryden Status

Aerospace Control & Guidance Sub-committee

Meeting 104

Charlottesville, VA

October 2009

Steve Jacobson (661) 276-7423 steve.jacobson@nasa.gov

IRAC F-18 #853 Testbed

- Dedicated Ghz processor for experiment
- Shell & process for Simulink autocode (or c-code)
- Can control commands to:

All aero surfaces (except speed brake)

All pilot inputs

Both engine throttles independently

- Limit checks done by Class A software in RFCS
- Potential for Class A experiment (dual ARTS IV or in quad RFCS) – take to landing?
- Tons of research instrumentation parameters (mostly related to structures)
- Simulated failure of multiple control surfaces

NASA Dryden Flight Research Center Photo Collection http://www.dfrc.nasa.gov/Gallery/Photo/index.html NASA Photo: EC04–0361–16 Date: December 15, 2004 Photo By: Carla Thomas

NASA's flexible—wing F/A–18 maneuvers through a test point during the second phase of the NASA/Air Force Active Aeroelastic Wing flight research program.

ACGSC Meeting 104, Oct 2009

IRAC Full Scale Flight Experiment Peer Review Selection Process

- Completed workshop at AlAA GNC in Chicago
 - Very good feedback and discussion
- Decision to emphasize three adaptive system Focus Areas:
 - 1 Pilot Interaction
 - 2 Simplified System
 - Analyzable
 - V&V-able
 - 3 Structural Interaction
 - Static structures fiber optic deflection measurement system
 - Aero-servo-elasticity adaptive feedback to eliminate structural modes from sensed motion

IRAC F-18 #853 Testbed - Current Status

- Completed Hardware-in-the-loop testing (August)
 - Aircraft is currently flying non-research flights
 - First flight of new hardware March 2010

- Investigating ways for pilot to control learning rates
- Planning to fly cross-coupling handling qualities metric development test with AFFTC test pilot school
- Future planned work
 - Adaptive controller implemented in redundant system

NASA G-III Research Aircraft

- NASA DFRC is acquiring a Gulfstream III (G-III) to serve as a flying testbed for aeronautics experiments
- The aircraft will be instrumented and modified to accommodate a range of flight testexperiments
- Laminar Flow Glove
 - NASA's ERA program is funding a flight-test of a wing glove with a natural laminar airflow airfoil. Discrete Roughness Elements (DRE)s will be placed on the glove for passive laminar flow control. Texas A&M and Dryden will be developing the glove.
- Adaptive Compliant Trailing Edge (ACTE)
 - AFRL is funding development and flight test of an adaptive, compliant flap. The port inboard flap of the G-III will be replaced with a compliant design. The flight test will examine ACTE suitability as a lift control device (flap), control surface (ailerons), and trim device (trim tabs).
- Aircraft acquisition planned for early CY 2010.

Adaptive Compliant Trailing Edge

ACGSC Meeting 104, Oct 2009

X-48B Blended Wing Body

- 66 flights completed
 - Slats extended and slats retracted stall onset has been characterized
 - Flight results providing data for aerodynamic model and simulation updates

- Peak seeking control to optimize in-flight drag reduction in 2010
- X-48C completed wind tunnel testing

SOFIA

- Stratospheric Observatory for Infrared Astronomy
 - 2.5 m diameter German built infrared telescope
 - Open port cavity
 - » ~24°-57° viewable elevation range
 - Platform is Boeing 747 SP
 - » Capable of 6+ hours of observation time
- Open door flights scheduled fall 2009
 - Envelope clearance with a cavity acoustics focus
 - Basic telescope systems characterization
 - Goal for first limited science missions by the end of 2009
 - Autopilot interface development to support science mission navigation requirements is ongoing

Orion CEV Launch Abort Systems Tests

- Dryden is leading the test activities for the Launch abort systems test. Tests will be conducted at White Sands, NM
- Pad Abort 1 (PA-1): Tests the basic functionality of the launch abort system from the pad in its preliminary design configuration.
- Ascent Abort 1 (AA-1): Tests the ability of the launch abort system to function while the spacecraft is traveling through the period of maximum dynamic pressure.
 - Cancelled due to scheduling conflicts –
 - AA-1 & AA-2 within 3 months of each other
- Ascent Abort 2 (AA-2): Tests the ability of the launch abort system to function as the spacecraft approaches the region of maximum drag.
- Pad Abort 2 (PA-2): Continues to refine the data collected on PA-1 on a more production-like crew module.
- Ascent Abort 3 (AA-3): Tests the ability of the launch abort system to perform in the event it is tumbling due to a loss of control of the launch vehicle.

Current activities

- Hardware testing and integration of the PA-1 crew module at White Sands, NM
- Preparation for PA-1Mission ReviewPlanning for future
- test flights

